Supporting Information

Hitomi et al. 10.1073/pnas.0809180106

SI Text

Cloning, Expression, and Purification. A gene encoding *A. thaliana* (6-4) photolyase (UVR3) was isolated from cDNA (kindly provided by Tokitaka Oyama of Kyoto University), by using the 5′ region of the UVR3 gene amplified from the library by PCR as a probe. To avoid mutation, a short 5′ EcoRI/Dra fragment amplified by PCR with EcoRI tag and a Dra/PstI fragment derived from the library were inserted between EcoRI and Pst sites of pKK223 (Amersham Pharmacia). To express protein, the plasmid carrying UVR3 gene was transformed into *E. coli* JM 109, which were cultured at 25 °C, induced by 1 mM isopropyl β-D-thiogalactoside and harvested after 14–16 h. *At*64PHR was purified with Blue Sepharose, DNA cellulose, hydroxyl apatite, and monoS column chromatography. The protein was stored at –80°C in a solution containing 50 mM Tris·HCl (pH 8.0), 50 mM NaCl, 1 mM DTT, and 50% glycerol.

For mutagenesis, the isolated gene was inserted into pGEX-4T-1 (Amersham Pharmacia) containing the GST gene. Mutant clones were constructed by using the QuikChange Site-Directed Mutagenesis Kit (Strategene). Gene products were purified as described (1). Repair activity of the (6-4) photolyase mutants was tested on dsDNA substrates containing (6-4) photoproducts as described (2, 3).

Fluorescent DNA Distortion Assay. Oligonucleotides containing the (6-4) photoproduct (PP) or normal TT, d(CCTACGCAAAT-XX-GGCATCC) (XX = PP or TT), were hybridized to a complementary strand containing 2-aminopurine (Ap), d(G-GATGCC-Ap-AATTTGCGTAGG) as described (4). These duplexes were dissolved at $0.3~\mu\mathrm{M}$ in a buffer containing 50 mM Tris·HCl (pH 8.0), $100~\mathrm{mM}$ NaCl, $1~\mathrm{mM}$ 2-mercaptoethanol, and 25% glycerol, and fluorescence spectra were measured at $10~\mathrm{^{\circ}C}$, in the absence or presence of $0.35~\mu\mathrm{M}$ WT $At64\mathrm{PHR}$ or Arg-420 mutant. The excitation wavelength was set to $313~\mathrm{nm}$.

Crystallization, Data Collection, and Structure Determination. The $At64\mathrm{PHR}$ buffer was replaced with 50 mM Tris·HCl (pH 8.0), 50 mM NaCl, 10% glycerol, and 10 mM DTT. Crystals of $At64\mathrm{PHR}$ were obtained at $4\,^{\circ}\mathrm{C}$ by hanging drop vapor diffusion against

100 mM Hepes (pH 6.6), 25 mM potassium acetate, and 20% polyethylene glycol 6000. Drops contained 1 μL of each protein (>25 mg/mL) and well solution, plus 0.2 μL of 30% MPD. Crystals were flash-frozen with mother liquor plus $10{-}15\%$ ethylene glycol under liquid nitrogen. X-ray diffraction data were collected at the Advanced Light Source beamline 8.3.1 and processed with DENZO/Scalepack (5).

We determined the structure by molecular replacement, using diffraction data from 10- to 4-Å resolution. The search probe consisted of 4 overlaid structures: a partial theoretical model for XI64PHR (3), and crystal structures for *E. coli* CPD photolyase (PDB ID Code 1DNP), cyanobacterial CPD photolyase from *Anacystis nidulans* (PDB ID Code 1QNF), and the cyanobacterial cryptochrome DASH from *Synechocystis* sp. PCC6803 (PDB ID Code 1NP7). In the crystal lattice, *At*64PHR molecules are linked into chains by intermolecular salt bridges joining conserved Arg-420 with Glu-211. Initial phases obtained with AmoRe (6) gave a correlation factor of 27.6% and an *R* factor of 48.6% in the resolution range of 10 to 4 Å. The *At*64PHR model was fit manually with TURBO FRODO (7) and refined with CNS (8). Data collection and refinement statistics are summarized in Table S1.

Transcription Assay. 293T cells were reverse-transfected in 96-well plates as described (9). Briefly, for each transfection we prepared a plasmid DNA mixture consisting of 25 ng of Per1-Luciferase reporter construct, 50 ng CMV-mBMAL1, 120 ng CMVhCLOCK, CMV-CRY (0-5 ng, as indicated) plus filler DNA to bring the total to 250 ng. The DNA mix was diluted in a final volume of 50 μ L of serum-free DMEM containing 0.75 μ L of Fugene 6. The Fugene/DNA/serum-free DMEM mixes were then distributed into a 96-well, white, flat-bottom tissue culture plate and incubated at room temperature for 20-40 min. After this period, 50 µL of a 293T cell suspension, in 20% FBScontaining DMEM (800,000 cells/mL; 40,000 cells per well), were distributed onto each well and the plate was subsequently placed in a standard tissue culture incubator. Twenty-four hours after transfection, cell extracts were prepared with BriteGlo reagent (Promega) according to the manufacturer's instructions and the luciferase activity was measured in a TECAN M200 luminometer.

- Nakajima S, et al. (1998) Cloning and characterization of a gene (UVR3) requires for photorepair of 6-4 photoproducts in Arabidopsis thaliana. Nucleic Acids Res 26:638– 644.
- Hitomi K, et al. (1997) Binding and catalytic properties of Xenopus (6-4) photolyase. J Biol Chem 272:32591–32598.
- Hitomi K, et al. (2001) Role of two histidines in the (6-4) photolyase reaction. J Biol Chem 276:10103–10109.
- Yamamoto J, Hitomi K, Todo T, Iwai S (2006) Chemical synthesis of oligodeoxyribonucleotides containing the Dewar valence isomer of the (6-4) photoproduct and their use in (6-4) photolyase studies. Nucleic Acids Res 34:4406–4415.
- Otwinowski Z, Minor W (1997) Processing X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326.
- Navaza J (1994) AMoRe: An automated package for molecular replacement. Acta Crystallogr A 50:157–163.
- Roussel A, Cambillau C (1989) TURBO-FRODO. Silicon Graphics Geometry Partners Directory (Silicon Graphics, Mountain View, CA), pp 77–78.
- Brünger AT, et al. (1998) Crystallography and NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr D 54:905–921.
- Sato TK, et al. (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319.

Fig. S1. Phylogenetic tree for PHR/CRY family has 4 distinct CRY clusters: 6-4/clock, insect-specific, plant-specific, and CRY DASH (found in plants, animals and bacteria). The (6-4) photolyases belong to the 6-4/clock cluster, and class I CPD photolyases resemble plant-specific CRYs, but the class II CPD photolyases cluster alone.

Fig. S2. Structure of UV-induced photoproducts. (a) Pyrimidine (6-4) pyrimidone photoproduct (PDB ID code 1EHL). (b) Cyclobutane pyrimidine dimer (PDB ID code 1VAS).

Fig. S3. Gel showing loss of DNA repair activity for single-site At64PHR mutants in which active-site His-364 and His-368 have been substituted with Ala.

Fig. S4. Fluorescence detection of (6-4) photoproduct flipping out of duplex DNA by WT and mutant At64PHR. Substitution of active-site Arg-420 (His in clock CRYs) with Ala does not abolish photoproduct recognition.

Fig. S5. The At64PHR Trp electron-transfer pathway (gray) to FAD (yellow) is conserved structurally with the Trp triad of E. coli CPD photolyase (white), but exhibits some modifications. The middle Trp-383 and outer Trp-329 side chains hydrogen-bond to sulfur atoms (spheres) contributed by Met-318 and Cys-324 of the sulfur loop. Three additional sulfur atoms cluster nearby.

Table S1. Crystallographic data and refinement statistics

Measurement	Value
X-ray data	
Space group	P2 ₁ 2 ₁ 2 ₁
	a = 112.4 Å
	b = 139.0 Å
	c = 143.1 Å
	$\alpha = \beta = \gamma = 90.0^{\circ}$
Resolution, Å	60–2.7
Total no. reflections	917,413
Unique reflections	62,218
No. reflections used	59,584
Completeness, %	99.8 (98.4)
Average I/δ	21.9 (3.1)
R _{sym}	0.091 (0.446)
Refinement	
Resolution, Å	60–2.7
No. protein atoms	12,553
No. water atoms	678
R _{work} , %	20.2
R _{free} %	23.8
Bond length, Å	0.0067
Bond angles, °	1.29
Favored, %	92.6
Allowed, %	98.4

Numbers in parentheses are for the highest-resolution shell (2.8–2.7 Å) of the data. $R_{\text{sym}} = \sum_h \sum_l i l(h) - I_l(h) | l \sum_h \sum_l I_l(h)$, where $I_l(h)$ is the ith measurement of the intensity for Miller indices h, and I(h) represents the mean intensity value of the symmetry (or Friedel) equivalent reflections of Miller indices h. $R_{\text{work}} = \sum_h ||F_o| - |F_o|| |\sum_h |F_o|$. The formula for R_{free} is the same as that for R_{work} , except that it is calculated with 5% of the structure factors that had not been used for refinement.